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A simple method of solution for a group of problems involving the com-

bined modes of radiation and conduction heat exchange through radiant media
is proposed. Considering the radiant exchange factors involved in the equa-
tions of trensfer to be independent of the conduction process replaces the
integrals in these equations by constants that can be determined elther from
pure radiation solutions avaeilable in the literature or by an independent
solution. Comparison of approximate radiation-conduction solutions is made
with exact solutions of the integro-differentisl equations present in the

literature and agreement is found over & large range of parameters.
v
INTRODUCTION

Problems involving combined modes of heat transfer lead to the considera-

tion of nonlinear integro-differential equations, the solution of which is of

course quite difficult. For even simple cases involving conduction and radia-

tion of heat between surfaces, few investigations have been carried out.
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The problem considered here is the determination of the temperature
distribution in a gray nonisothermal gas with constent thermel conductivity
and absorption coefficient contained between infinite gray surfaces. Spe-
cifically, the cases of infinite gray parallel plates and infinitely long
concentric gray cylinders are attacked. The heat transferred between the
bounding surfaces is also considered.

The problem of infinite plates described in the preceding paragraph
has been examined by some authors (1 to 3). The solutions of Viskanta and
Grosh (1 and 3) are exact and are formulated in terms of integro-differential
equations. Einstein (2) attacks the problem through consideration of zone
interchange factors, which also leads to integro-differential equations. He
treats finite plates and includes the effect of flow, but is forced to make
certain approximations. Both.the methods cited are tedious from the stand-
point of solution of & specific problem, and & reduction in the form of the
equations involved would be desirable.

In this paper, it is shown how problems of energy transfer by combined
conduction end radlation in some simple geometries can be formulated in terms
of differential equations, which can then be solved by a finite-difference
technique;“wfﬁfé ;emoval of the integral terms involves an approximation of
the radiative exchange factors used in the formulation. With this approxi-
mation, it is shown that, if the optical thickness, radiation-conduction
parameter, surface-temperature ratio, surface emissivities, and, for concen-
tric cylinders, the diameter ratio are known, then the temperature distribu-
tion in the gas and the heat transfer between the surfaces can be readily

found. The solutions converge quite rapidly because of the absence of
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integral terms in the equations.

ANALYSTS
Case of Infinite Parallel Plates

Consider the geometry of infinite parsllel gray plates at temperatures
TO and Tl’ separated by a distance D, and enclosing a gray gas of absorp-
tion coefficient K and thermal conductivity k. The gas is nonisothermal,
although the gas properties are considered independent of temperature. The
problem is to find the temperature distribution in the gas and the heat
transferred between the plates.

A heat balance for a unit time on an lsothermal gas increment of width
Ax, refractive index 1, and unit area gives

4 4 |
€09ToF0-Ax,1 + €19TI1F1-Ax,1 + i— (Tg,1-1 - Tg,1) +2
gi

= g% (Tg,1 - Tg,i41) + 4K°Té:i & (1)
The fraction Fp Ox, i appearing in the first two terms is defined as the
fraction of the energy emitted by surface A, which is absorbed in a gas
increment i of width Ax at some time during transit to absorption at
either surface.

The first two terms in Equation (1) represent, respectively, the rate
of energy radiated from surfaces O and 1 and absorbed in increment i.
These terms include that energy originally leaving a surface which is
absorbed elsewhere in the gas and is then reemitted, finally being absorbed

in increment i.




The third term represents the rate of energy conducted into increment i
from the adjacent (i - 1) increment.

The term Eg:gi is included ,to account for energy that originally
leaves a surface by conduction, is conducted into elements other than 1, is
then emitted as radiant energy by these elements, and is absorbed in increment
i. It will consist of contributions from elements where the slope of tem-
perature is decreasing (dz'I‘/dxz positive), singe only in these elements will
more energy be conducted in than out. This excess conduction acts as a
source of radiant energy in the gas, and some portion of this rédiant energy
may be absorbed in increment i.

The first term on the right is the rate of energy conducted from incre-
ment i to adjacent increment (i + 1). The final term is the radiation
emitted from increment 1. Because ZE:gi will, in general, have contribu-
tions from only & portion of the elements and the total value of ZE: will
usuelly be small compared to the other energy eptering element i, itgtill
henceforth be neglected. If a somewhat more accurate final temperature dis-
tribution were desired, EE:gi could be carried forward in the following
steps: it could be set equal to zero as a first approximation and then solved
for by iteration on the basis of the resulting temperature distribution. 1In
view of other approximations to be made, this accuracy was not deemed neces-
S8TIY.

The fraction ¥y Ax,i is dependent. uypon tﬁé conduction process, since,
for a pure radiation problem, all energy absorbed in an increment will be
reemitted under steady-state conditions, while, with simultaneous conductlion,

some portion of the absorbed energy will be conducted from any increment where



dzT/dx2 is negative. Thus, when conduction is present, the fraction of the
v;adiation leaving a sqfface and finally reaching a given element will be
smeller than in the absence of cohduction.

When radiation is the prominent mode of heat transfer, however, any
error that would occur from the assumption that FA‘Ax,i 1s independent of
the conduction process is smell. When conduction predominates, though, large
errors in the radiastion contribution may be tolerated. In the following
argument, therefore, it is assumed that Fy Ax,i is independent of the con-
duction process. This leads to substantiml reduction in the complexity of
the equations of ftransfer.

If surfaces 0 and 1 are at the same temperaturé, Equation (1)

reduces to
eOFO-AX,i + €lFl-AX,i = 4K Ax (2)
Since this relation is independent of surface temperatures if it is

assumed independent of the conduction process, 1t can be substituted in

Equation (1) to give

¥ .
1w
1/4
* *
[deOﬂAX,i(l ) N (Té;i—l - ZTg 1 +Tg 141) + T*%] g
_ 41 AXX 41(5%)2 1
= *
1-17
(3)
where the following definitions have been made and substituted:
T*:—‘-._é; T = KDy AXEéX-; N = K/D
AT, D T3
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This equation defines a nondimensional temperature at the midpoint of the

gas increment. With the gas increment numbering system i = 1,2, + « « ,f,
Equation (3) will only apply for the range of increment numbers 1 < i < f.
Following the same method of derivation as for Equation (3) for gas incre-

ments 1 and f gives the boundary equations

-

1/4
_ %4 - g %
eOFO-AXLl(l %) + n(z g1t .Tg;2) + T - ¥
41 AX 2 1 1
(1-1)
1/4
_ ¥4 * _ % ¥
[eoFO-AX;f(l Tl ) + N (i)f'l i STg}f * ZTl) + 1{4] - TE)L(-

o = 41 XX 41(AX)%2

(1-1)

(5)
As 1s shown in the appendix, the exchange factor Fb-Ax;i can be
found for'any.gombination of wall emissivities &y &and € and any opti-
cal thickness Tl with a derivation similer to that in (4) 1f only the

exchange factor for black surfaces ﬁb-Ai;i is known. The relation is

oF _ Fo-ax,s * Fo T A
0-AX,1 1 +Fg 1(Ey + Ep)

(6)

where Ep = (1 - €)/ey and Fy_y 1is the exchange.factor for radiation
between black plates through a gray gas.

Examination of Equations (3) to (5) then leads to the conclusion that
the gas-temperature distribution ©(X) can be found by an iterative solution
of Equations (3) to (6) if the conduction-radiation parameter N, the gas
optical thickness 1, the plate temperature ratio Ti, and the emissivities

of the plates are specified. All interchange factors may be obtained from



-7 -

available solutions of pure radistive trgnsfer between black surfaces en-
closing a gray gas, some of which are taken from (5) and plotted in figure 1.
The equations are seen to involve no integral te&ms, although ﬁb-AX,i was,
of course, originally found by some method of solution of & problem involving

integral equations.

Heat Transfer Between Surfaces
Once the gas temperature distribution is known from the previous calcu-
lations, the heat transfer between the surfaces may be obtained from a heat
balance at surface 0, which yields
d0-1 = -k (%J—T() + €QoToFo-1 - €10TiF1 o - 2 (7)
0 _ g-0

If the surface temperatures are equael, from EE: - = 0 may be found
, 2-0

€oFo-1 = &F1-0 (8)
If it 1s aessumed that FAB is 1independent of the conduction process, then

Equetion (8) may be substituted into Equation (7) to obtain

fo-1 -N aty |
. 4 4 ~ %4 ax + eOFO-l (98')

If Equation (Sa) is rederived for the other surface,. the following is ob-

tained:

aT*
qo—l ~ -N g + EoFo_l (gb)

(T - @) (1 - B0 \E )y

The exchange factor €,F, , can be found from the black surface exchange
v O vUTL

factor ﬁb-l through the relation
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where Ry = ro/rl and R; = Ry + [1 - (1/2)JAR. The opticgl thickness 1

k/(r) - 1)
is now defined by 17, = K(r] - rg), and Ng = ———.

o

c

Again, as shown in (4), the relation between the gray-plate and black-

plate exchange factors is

F L Fo1B TRy AR 1
0-AR,1 (1 - 36)

14 Fo_l(Eo + RoEl)

€oF0-AR,1 = (14)

where ﬁo-l is the exchange factor for radiastion between black concentric

eylinders enclosing & gray ges of optical thickness ‘Tc.

Heat Transfer Between Concentric Cylinders
The heat transfer between the cylindrical surfeces can be derived in a

manner similar to that for Equation (9), which gives

- N.(1 ~ Ry) faTX
or, on the basis of the derivative at the outer surface,
- N.(1 - Ry) faT*
_.E‘u___ A eOF - = - Ro g (15b)
o(T¢ - ) 0-1 " g (1 - r*) \&B
0 1 0 1 R=1
The relation between the black and gray surface exchange factors is
F
0-1
eofo-1 = (16)

1+ Fo_l(EO + RoFq)

as obtained from (4).
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DISCUSSION AND RESULTS

The method presented herein depends on the availability of radiant ex-
change factors for the specific problem being attacked. These factors, as
calculated for black surfaces in the infinite flat plate and infinitely long
concentric cylinder geometries from (5) end (4), respectively, are shown
in Figure 1. From these factors, the exchange factors for any combination
of surface emissivities may be calculated by the use of the appropriate
Equation (6), (10), (14), or (18).

If the factors for a specific geometry are not available in an exact
solution, which itself involves integral equations, the approximaﬁion pre-~
sented by Deissler (8) may be used. It is & modified second-order diffusion
approximation, with Jjump boundary conditions, which yields very good results
over a large range of opticel thickness. The range of validity is shown in
(4) and (5) for the geometries analyzed here. For flat plates, thie approxi-
mation gives

= 47 AX[37(1 - X) + 2]
Fo-ax,x = 3T + 4 (17)

7 4

0-1 7% 3T 4+ 4 (18)

and for concentric cylinders

Fo.1 = 5T ln:;O (3 - Rg) (19)
1/2(By + 1) - 4%30_ )Y " 1o Rio (83 - 1)
C
- 4Fy_1T.R AR 3(1 - Ry) 37, In R
Fo-AR,R = —(%-%—ﬁgy- 1/2 - lGTcRO " I T Rg) (20)

L —

as derived from diffusion solutions presented in (4) and (5) following Deissler.
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Deissler's method may also be used to compute exchange factors in other
geometries.

Comparison of the results of the present method is made with the exact
results of Viskanta and Grosh (1) and (3) and Einstein (2) and (8) and with
the approximate solution of Konakov (7). The data from Table I of (1) were

corrected to remove some errors in the values of N for certain ranges of

.

The solution with the present method is easily programmed in general form
for the high speed computer by any of a number of standard methods of sOlutioq.
The curves presented herein were computed by the Newton-Raphson method de-
scribed for this type problem by Ness (9). The solutions converge extremely
rapidly because the matrix of equat.ons has nonzero elements on only three
diagonals. Heat-transfer results were computed by fitting a parabolas through
the three computed temperstures near the wall and by computing the derivative
at the wall. Derivatives at each wall were obtained in this manner, and the
heat transfer computed by each i1s shown in Table I.

Because the effect of radiation is exaggersated by this method as shown in
the appendix, the predicted temperatures are always higher than the exact
solution. It follows that the derivative (dT*/dX) will always be smaller than
the exact solution at surface O, and larger at surface 1. Examination of
Equations (9) and (15) will show that, at surface 1, the predicted heat trans-
fer will therefore always be higher than the exact solution, because the term
eOFO-l is also always predicted as too large by this method. At surface O,
since the gradient 1s too small and €g¥p-] -too large, the result may be in

error by a positive or negative amount. Use of the larger derivative will
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therefore allow conservative prediction for problems in which minimum heat
transfer is the goal since the actual heat transfer will be less than that
predicted, while use of the smaller derivative will usually give a more

accurate result.

Temperature Distributions

Figures 2(a) and (b) compare temperature distributions in a gas, as
calculated by the method of this paper, with those based on solution of the
integro-differential equations. Comparison is exact for pure conduction
(N - «) and pure radiation (N - O) as required, and the widest deviation
occurs at values of the conduction-radiation parameter N for which the
temperature profile is intermediate to the limiting curves. As discussed.
before, the method of solution used in thls paper tends to exaggerate the
effect of radistive transfer, so thet the predicted temperatures asre too
high.

For deéreasing surface emissivity, accuracy is also decreassed. Highly
reflective walls decrease radlatlive heat transfer between the surfeces, but
increase the value of FA-AX,i‘ This effect i1s exaggerated proportionately
by the approximetion used in the present method. This is illustrated in
Figure 2(c).

One set of temperature distributions for the concentric cylinder case
is shown in Figure 3. The exact solutions were obtained by Einstein (8)
for the case of a heat-generating core transferring energy through a gray
gas to an outer surface. Temperatures at only four points werc evaluated Ln

the gas, and these, plus the derivative at the core-gas interface, were used



- 13 -

to define the curve in reference (8). The cylinder was assumed to have a
length to diameter ratio of 5, and the temperature profiles presented were
at the midpoint of the tube. End effects were assumed negligible. Compari-
son 1s made here because no other results are available for combined radia-

tion and conduction in cylindrical geometry.

Heat-Transfer Results

Accuracy of the heat-transfer results was generally quite good for the
parellel-plate case, but results became less accurate for cases where the
radiative effects strongly affected the temperature distribution. This
occurred for cases involving large gas optical thickness, low surface emis-
sivity, and a value of the conduction-radistion parameter N such that
raediation and conduction both contributed significantly to total hest trans-
fer.

Comparison of the present results to those obtained by merely summing
the contribution of pure radiation WBAD and pure conduction WCOND without
regard to their interaction shows that the present method gives about the
same accuracy in comparison with the exact solutions if the smaller of the
(aT*/axX) values is used, especially at low surface emissivities. This is
true except for the limited regions where the approximation breaks dowm as
noted previously.

The value of the present method is its usefulness for many design cases

by the prediction of too large a heat-transfer rate, while the simple additive

th

ct
5

ct
1]

method predicts too small a rate for parallel plates. The use ¢

simple methods gives upper and lower limits for heat transfer.
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For concentric cylinders, no solution, except Einstein's (8) for a very
few cases, exists in the literature. Pure radiation results from (3) indi-
cate that the neglect of end effects in (8) may have introduced considersble
error in the heat-transfer calculations.

Figure 4 shows one set of heat-transfer results for the concentric
cylinders. The present results are seen to be physically reasonable, approach-
ing the pure radiation solution at small NO'

Both the present method and the simple additive method predict too large
8 heat-transfer rate in this geometry. The present method will always be at
least as accurate and generally more accurate, however, because the derivative
at either wall will be closer to the exact derivative. The results of Konakov
(7) are plotted for comparison. The reason is that the present method predicts
a wall derivative between the exact combined solution and the pure conduction
solution at surface O while the additive method uses the higher pure-

conduction derivative.

Other Approximate Solutions
Konakov (7) presents simple equations for the transfer of heat in the
geometries studied herein and for the case of concentric spheres. For
7 < 2, his equations in the nomenclature used herein become

(1 - ) 1

= + (21)

for infinite plates, and
-N (1 - T)(1 - Ry) , 1
Ry(1 - T*)1n R, 1 +Eg + Rofy

e

e =

(22)

for infinitely long concentric cylinders. These are from Equations (72)
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and (92), respectively, of reference (7).

Results calculated by Equation (21) are compared in Table I to exact
solutions and are seen to vary widely in many cases from them.

For concentric cylinders, Konakov's equation predicts ¥ = 1 for pure
radiation between black cylinders for all T. <2 and all Ro, which is
shown to be in error by up to 150 percent st T, near 2 and R0 near 1 by
the results of (4).

For £hese reasons, Konakov's results should be used with some discretion.

Probstein (10) also takes the approach of adding the independent conduc-
tion and radiation solufions without regard to interactions but uses &
radiation solution similar to that of Deissler (6) in that an energy jump at
the surface-gas interface is considered. Deissler’s solution reduces to the
radiation solution of (10) for the infinite black plate enclosing a gray-gas
case, but is probably more accurate in other geometries because of the inclu-
sion of second-order terms. Deissler (6) also includes the effect of gray
walls and nongray gases. The heat-transfer results of (10) are quite similar
to those obtained by the addition of the independent radiation and conduction

solutions.

CONCLUDING REMARKS
The solutions of certain types of radiant-exchange problems are available
in the literature. Where these solutions are present, it should be possible
to determine exchange factors, and then to follow a similar analysis to that
applied here in order to find solutions to combined radiation end conduction

problems in similar geometries.
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Results obtained in this manner, especially for the transfer of heat
between surfaces, should be better than those attained by the other approxi-
mations available. One approximation is simply the addition of the independ-
ent results obtained for pure conduction and pure radiation. All interactions
are ignored. Although Einstein (2) showed that the heat transfer calculated
in this menner differed from the exact solution by less than 10 percent over
the range of paremeters and for the geometry he studied, it can be shown by
the results of Table I (3), that greater deviations occur in other ranges,
especlally for low surface emissivities.

The method proposed here predicts & gas temperature gradient which is
dependent on interaction of conduction and radiation and thus allows falrly
accurate prediction of the total heat transfer, with the added bonus of a
predicted temperature distribution in the gas which is not available from the
other approximations.

The method discussed may also be of value for problems combining radiant
transfer with convection, and with convection and conduction. It is not
restricted in a genersl sense to the type problems discussed herein, but
could be extended to those involving more complex geometries and less restric-
tive assumptions on the gas properties. The accuracy of this method remains
to be checked in such cases.

As is shown by the results presented herein, the method of this paper
predicts temperatures that are somewhat too large and similarly predicts too
high a heat transfer in comparison with an exact solution. This allows

results Unat are conservative for many problems to be computed simply.
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NOTATION

area

distance between infinite parallel plates

emissivity ratio, (1 - €3)/ea

black body emissive power

exchange factor for black surfaces

exchange facltor, fraction of total energy emitted at surface A that
is absorbed at surface B

exchange factor, fraction of total energy emitted at surface A that
is absorbed in gas volume increment

thermal conductivity of the gas

conduction-radiation parsmeter, (k/d)/ch for plates, [k/(rl - o)]/UTg
for cylinders

heat rate

heat rate per unit area of surface O

nondimensional radius, r/rl

radius

te@perature, degrees absolute

nondimensional temperature, T/To

nondimensional position between plates, X = X/D

position between plates

emissivity of surface

gas absorption coefficient

nondimensional temperature ratio, (T* - T;)/(l . T;)
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APPENDIX - DERIVATION OF EXCHANGE-FACTOR RELATTONS
Surfece Exchange Factors
Writing heat balances at surfaces O and 1 of the infinite plate

geometry and neglecting conduction give
Qo = €oepolo + (1 - &) (QgFg_g + ¥ o) (A1)
Q = (1 - e1)(QoFg.y + @ F1.1) (42)
where plate 1 has been teken at zero tempersture, and fAB 1s the fraction of
total energy leaving surface A which 1s inclident on surface B with no
intermediate reflections from either surface. It is seen that th is in

essence the exchange factor between black surfaces enclosing a gray ges.

The energy absorbed at surface 1 is

€1 (Fo-19 + F1-19) = €0°h040F0-1 (43)
where FO-l is the exchange factor for gray surfaces defined in the body of
the paper.

We can note further that, for this geometry, and under the assumption of

constant gas properties, the following relations hold:

Fo_l + Fo_o =1 (A4:)
Flo+F.g=1 (A5)
F1.0 = Fo-1 (4s)

Combining (Al) through (A6) to eliminate Qy, Qs epolos Fi-0s Fi-1s and

Fo_o, gives

Fo-1

/A
PO \a

€
v U=-_1 frond
1 +»F0_1(El + Eo)
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E radiation source term for energy conducted to gas elements and

radiated away

of Stefan-Boltzmann constant

TyTo gas optical thickness, KD for plates, K(rl - ro) for cylinders
¥ heat-transfer ratio, QA_B/OAA(Ii - T%)

Subscripts:

A,B arbitrary surface

c cylindrical case

bl gas Ilncrement nearest surface 1

G arbitrary gas volume element

g geas

gi emitted from other gas increments, absorbed in increment i
g -0 emitted from gas increments, absorbed at surface O

i gas increment index

Ax,AX,AR gas volume increment of width Ax, or nondimensional width AX or
AR

0,1 surface 0 or 1
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where Ep = (1 - €)/ep.

Gas Excheange Factors
A radiant heat balance on isothermal gas increment 1, again neglecting

conduction, gives

€oF0-axX, 1200% = Fo-ax,1% *+ Fi-ax,1% (A8)
For black plates, Equation (2) reduces to
41 X = -F-'O-Ax,i + fl-AX,i (A9)
Combining (A8) and (A9) with (Al)'through (A7) to eliminate enodgs Fi_Ax,is
Q, and Qqy gives

Fo-ax,1 + 4Fo.1E 7 &X
1 +Fqy.1(Ey + Ep)

€oFo-axX,i = (410)

The derivation of similar relations for concentric cylinders is contained

in (4).

Overprediction of Gas Temperatures Between Flat Plates
Pure radiation temperature distributions in grey gases between infinite
parallel plates are antisymmetrical around the average emissive power of the
plates when plotted in terms of emissive power. The value of ©® can therefore
be shown to lie only in the range 0.5 < ® < 0.841. at the point midway between
the plates (X = 0.5) for the pure radiation solution. Comparison of any pure

radiation solution in this range with the pure conduction solution then
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indicates that there will always be a greater or equal amount of sinks than
sources* in the body of the gas. This occurs because the exact combined
solution must lie between or above the separate pure-mode solutions. Any
contribution, therefore, to the heat-balance equations by the ZE: source
term will be more than compensated by decreasses in the exchangéAféctor
terms by radiation sinks. Neglect of the :E: contribution, therefore,

still leaves an overpredicted temperature under the assumptions.

*A source for radiation occurs in any increment where the conducted
energy input exceeds the conducted energy output; (dzT/dXZ) is positive. A

sink occurs where the converse is true.
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TRANSFER BETWEEN INFINITE PARALIFI, PLATES

do-1
en = e | T |TF N =01
R B
Exact solutions ‘Present,  |VYrap * Veomp| (7)
using - ,
References .
aT* ar*
(1) and/or (3)| (2) |{aX 0 ax N
1.0 |10 |0.5| 0.011664 0.133 | ~=--- 0.129| 0.174 0.127 |-----
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FIGURE LEGENDS
Figure la. - Exchange factors between black infinite parallel plates.
Figure 1b. - Exchange factors between infinite plate and gas element.

Figure lc. - Exchange factors between infinitely long concentric black
cylinders.

Figure 1d. - Exchange factors between inner black concentric cylinder and
gas increment: effect of gas optical thickness. Radius ratio,

RO = I'O/I‘l = O-l.

Figure le. - Exchange factors between inner black concentric cylinder and
gas increment: effect of radius ratio. Gas optical thickness, 1, = 2.

Figure 2a. - Comparison of temperature distributions between flat plates
and effect of conduction-radiation parameter. T = 1.0, T = 0.5, g=¢€ =1.

Figure 2b. - Comparison of temperature distributions between flat plates and
effect of conduction-radiestion parameter. 1 = 1.0, T{ = 0.10, eg=¢; =1

Figure 2c¢. - Comparison of temperature distributions between flat plates and
effect of surface emissivity. 7= 1, Tf = 0.5, N = 0.04.

Figure 3. - Temperature distributions between infinitely long concentric
cylinders.

Figure 4. Heat transfer between infinitely long concentric cylinders en-
closing a gray gas: radius ratio, RO = 0,5; surface emissivities,
€ = € = 1; surface temperature ratio T = 0.5; optical thickness,

Tc-=2.
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Filg. la. Exchange factors between black infinite parallel plates.
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Flg. 1b. Exchange factors between infinite plate
and gas element.



E-2155

RADIUS RATIO,

Rq = ra/r,
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Flg. lc. Exchange factors between infinitely long concentric black cylinders.
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Fig. 1d. Exchange factors beftween inner black con-
centric cylinder and gas increment: effect
of gas optical thickness. Radius ratio,
R, = ro/gl = 0.1.
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2a. Comparison of temperature distributions be-
tween flat plates and effect of gonduction-
radiation parameter. T = 1.0, T1 = 0.5,
€g =€ = 1.
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Fig. 2b. Comparison of temperature distributions be-

tween flat plates and effect of gonduction-
radiation parameter. T = 1.0, T1 = 0.10
€ = € = 1.
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Fig. 2c. Comparison of temperature distributions be-
tween flat plates and*effect of surface
emissivity. T =1, Tl = 0.5, N = 0.04.
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LIMITING SOLUTIONS
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Fig. 3. Temperature distributions between infinitely long
concentric cylinders. T§ = 0.576, 1 = 1.6.
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Fig. 4. Heat transfer between infinitely long con-
centric cylinders enclosing a gray gas:
radius ratio, R, = 0.5; surface emissivities,
€o = € = 1; Temperature ratio, T} = 0.5;
optical thickness, Te = 2.
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